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AhslraeL W uudy the dynamical behaviour of discommensuration pattems that have 
been oberved in mmmensurate-incommenrale phase transitions Using a melhod 
tused on a phenomenological dpamics model pvpmed by Enomoto and Kato, hvo- 
dimensional simulalions are performed lo discus the time evolution of the model system 
“ I s  equilibrium states from lhe initial disordered state. 

The dynamics of discommensurations (DC) plays an important role in commensurate 
incommensurate (c-IC) phase transitions (for a review, see 111). Discommensurations 
are interfaces that separate commensurate domains. The DC patterns have been 
observed in electron microscopic studies of chargedensity waves in 2H-’hSe, [2], 
superconducting Bi-CaSr-Cu-O [3] and long-period superlattices of A,B-type alloys 
with L1, structure like Ag-Mg and Au-Zn [4]. In these systems the spatial patterns 
of the structure have been found to exhibit fascinating timedependent behaviour and 
also to affect various thermal and dielectric properties. 

Interesting developments in the study of the c-IC transitions are their theoretical 
interpretations in terms of ‘stripples’ and the soliton picture of incommensurate phases 
11, 51. No dynamical theory of these fascinating phenomena appears to exist, except 
for an interfacial approach to the motion of DC [6] and the molecular dynamics 
simulations [7]. However, the time-dependent behaviour of the system discussed 
below has not yet been investigated. 

Recently we have proposed the dynamical model equation [SI for the c-IC han- 
sition using the phenomenological free energy 191, and performed two-dimensional 
simulations of the model system. This model has been found to yield experimentally 
the observed typical evolution patterns, although we consider the case in which only 
one type of DC is involved and also ignore interlayer couplings as is required for real 
materials. Moreover, we have found that, starting from the initially disordered state, 
the system gradually reaches an equilibrium state, which .k characterized by the num- 
ber of DC, via the intersections and recombinations of the DC and stripples. However, 
these simulations were inadequate to study long-time behaviour, such as the growth 
law for the average ordered domain size. Thus, the purpose of the present work is to 
perform a long-lime simulation with a large system size. In particular, simulating the 
model system from the initially disordered state, we study the time evolution of the 
system towards equilibrium states by changing the magnitude of the misfit, defined 
below. 

Let us consider the spatial modulation described by a complex scalar field 

g ( r , t )  F(r , t )exp[iS(r , t ) ]  
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at position r and time t. Here F (2 0) and S are the amplitude and phase variables, 
respectively. The coarse-grained free energy functional G[g] of the system considered 
here is taken to be [9] 

Y Enomoto and K Araki 

with 

w[gl E -1912 + $Is14 - $u(gP + g'P) 
= - F 2  + $p - uFPcos(pS) 

(2) 
(3) 

where p is a positive integer, which denotes the number of different commensu- 
rate domains (for example, p = 3 for the chargedensity wave (CDW) states in W- 
'Me,), 6 is a misfit vector, and g* denotes the complex conjugate of g. Here 
the p ordered commensurate phases are characterized by spatially uniform states 
( F ( r , t ) , S ( r , t ) )  = ( F , , S , )  for j = O,l,. .. , p  - 1 with [lo, 111 

6 . 6  - 1 + F," - ~ V P C - ~  = 0 (4) 
s, = ( 2 T / P ) 5  (5) 

Moreover, we have assumed that the dynamics can be described by the following 
equation for g(r,  t) as [SI 

( a / a t ) g ( r , t )  -L aG/ag* (6) 
which gives 

( a / a t ) g ( r ,  f )  = L(Vzg - 2 3 .  V g  + g ( l  - 1gI2 - 6 . 6 )  + fvpg"-']  (7) 
where L is a positive constant. This model is the continuum version of the kinetic 
p-state vector Potts model involving the misfit vector 6. Note that in the present 
phenomenological model changing the magnitude of the misfit might correspond to 
changing the temperature. However, at the present stage, we do not discuss the 
relationship between them any more. Notice also that within the present model 
nucleation cannot be dealt with, since we have neglected the thermal noise. 

Before carrying out computer simulations, we comment on the ground state of 
the present model as a function of 6 with 6 = (6,O). By the analogy of [l], the 
ground state of incommensurate phases exhibited by this sytem is described in terms 
of the DC l i e  lattices, where the Rat DC lines are regularly arranged along the I 
direction with average spacing z. The free energy density of such a DC lattice system, 
f (  z, S), is given by [9, 11, 121 

! ( z , 6 )  = @ / z )  + 4(u/z)exp(-z /E)  (9 

U 2 ~ : ' ~ F : / p  (9) 

(10) 

hC E ( p / 2 ~ ) u / F :  (11) 

(12) 

with 

- 
U U - (2~/p)F:6 e (2~/p)F,"(6,  - 6) 

2) = L V F P - ~  
e - 2  e 
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where U is the isolated Dc energy per unit length in the absence of misfit, E = 
( P V , ) - ’ / ~  is the width of a DC line, and 6, is the value of 6 at the transition to 
the commensurate phase. In obtaining the above expression for f(z,6),  we have 
assumed that all the parameters in the system, except for the misfit 6, are taken to 
be fixed and also have omitted unimportant parts like the Dc wandering 1111. Then, 
the ground state of the present model is determined by minimizing equation (8) with 
respect to +. Therefore, we have approximately the equilibrium value of z ,  denoted 
as z,, for 6 > 6,, 

which is similar to the well hown mean-field result [I]. This is understood as 
follows. In general, the late-stage dynamics of the dissipative systems described by 
complex order parameters, like in the present model, is known to be dominated 
by slow variations of the phase variable of the order parameter [ll]. Thus, the 
essence of the present model in the late stage becomes similar to that of the model 
discussed in [l]. On the other hand, for 6 < 6, regularly arranged DC lattices 
cannot exist stably. Thus an equilibrium state in this case is a spatially homogeneous 
state with (F(r,t),S(r,t)) = (F,,S,) where the value of j is fured ID a certain 
constant for the whole space, which depends on the initial conditions. In fact, from 
recent computer simulations [13] we have found that the system for 6 < 6, gradually 
approaches such an equilibrium state via the annihilation of vertices. 

Now we carry out two-dimensional computer simulations of the above equation 
on an N, x N, square lattice with periodic boundary’conditions by changing the 
magnitude of the misfit. In the following, we set p = 3 and 6 = (6,O). TO obtain 
a single positive solution of equation (4), we must restrict ourselves to the case with 
0 < 6 < 1. In this case we have 

Moreover, in the present simulations we use the simple Euler method with the time 
step At  = 0.05, lattice spacing A i  = Ay = 1, L = 1 and v = 0.2/3. Note 
that to solve equation (7) numerically, it is convenient to use two real fields, A and 
B, defined by g(r,t) A ( r , t )  + i B ( r ,  t ) ,  rather than the amplitude and phase 
variables of g ( r ,  1 ) .  Initially at each lattice site both real fields, A and B, are chosen 
to be a Gaussian random number with average 0 and variance 0.01, which represents 
the disordered state with random noise. Note also that we have examined the other 
parameter values, and the results below do not change qualitatively. 

The evolution patterns are shown in figure 1 for N ,  = N ,  = 64 and 6 = 0.15. 
In the present and following figures we plot a dot on each disordered lattice site. 
Here the disordered lattice is characterized by the site with F ( c ,  t )  < O.975Fe or 
IS(r,  t )  - S, 1 > v / l 2  with j = 0,  l , % ,  which is thought to denote positions of DC 
lines and their vertices. In this figure we can see the intersections and recombination 
of the DC and stripples, which exhibit striking similarity to the experimentally observed 
DC patterns [2-4]. In figure 2 we show the DC structures at time 1 = 200 for various 
values of 6. The results of figures 1 and 2 are all obtained from the same initial 
configuration. From these figures we find that a tiny change of the misfit magnitude 
6 completely changes the dynamical behaviour of the system. This is understood as 
follows. Adopting the soliton picture of an incommensurate phase for 8 > 6, (E 
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-re 1. Time ~ ~ l u t i o n  of DC pailems for 6 = 
0.15 a1 wrious limes. 

n y r e  Z. DC patterns ai L = 200 for 6 = 0 (e), 
0.03 (b). 0.05 (c), 0.1 (d),  0.2 (e) and 0.25 (f). 

0.058 in this case) [l, 111, equilibrium states with different values of 6 correspond to 
different numbers of solitons. On the other hand, for 6 < 6, there are no flat DC 
lattices, which are not stable in this case. 

Now we discuss the time-dependent behaviour of the system. For this purpose we 
simulate the model using a 256 x 256 square lattice. Moreover, the following results 
are obtained by averaging over U) independent simulation runs. In figure 3 we show 
the time evolution of the average size of the ordered c”mensurate domains, 5(t) ,  
for different values of 6. Here i(t) is roughly evaluated from [14] 

(14) 
1 N. N ,  A x  

F ( t ) I  -E- 
Nu , = I  N ( i )  

where N ( i )  denotes the number of the Dc lines in the ith row along the z axis. 
From this figure we find that for various values of 6 the average size Z( t )  grows with 
time as 

for t, < t < t ,  (15) 
- z ( t )  = v l o g l , t  

but the coefficient U in equation (15) depends on the value of 6. We have checked 
that 1, z 10, and 1, z 1000 for 6 = 0.1 and t ,  IT IO00 for 6 = 1.0. The 
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0- 1 2 3 4 
log,,(f 1 OOj Q2 0.3 03 0.5 

+re 3. lime wolulions of Ihe average ordered 
domain &e ' E ( t ) / = ( I O ) ,  against loglo t for dif- 
ferent values 01 6. 

Figurr 4 
function of 6. 

Vanation of Y in qualion (15) as a 

time region for t < to corresponds to the initial transient regime where no DC 
appears, while for t > t , ,  7(t) almost becomes constant and thus the system may 
be interpreted as reaching equilibrium states. We have numerically checked that for 
t > t,, 7 ( t )  is almost consistent with z,, defined in equation (13) as a function 
of 6 (> 4). In figure 4 we show the values of U as a function of 6 (> 6J. It 
is found that decreasing the misfit magnitude 6 causes acceleration of the ordering 
process. This is understood as follows. The undulations of the flat DC lines have the 
effect of speeding up the ordering process, since these are still triggered by DC line 
annihilations due to attractive interactions between ordered commensurate domains 
with the same equilibrium phase d u e  Sj defined by equation (5). These results are 
similar to those of a quasi-one-dimensional simulation for layered king magnets [14], 
where the strength of anisotropy corresponds to the misfit magnitude discussed here. 

Finally we comment on the crossover of the above growth law of the average 
ordered domain size. Instead of the logarithmic growth law obtained here, we have 
obtained the $-power growth law for the case 6 = 0 [P3, U]. Ttlus, there must 
exist a crossover of the growth law at a certain value of 6. We have numerically 
checked that in the present simulation such a crossover o m r s  at 6 5 0.07, which is 
comparable with the value of hC, defined in equation (11) (6, = 0.058 in this case). 
As was discussed before, the difference between the asymptotic growth laws for these 
two cases is thought to be due to the difference between the equilibrium states and 
also the corresponding dominant dynamics in the late stage of the respective cases. 
In fact, for 6 > 6, the late-stage dynamics is dominated by the intersections and 
recombinations of the DC and stripples, while for 6 < 6, it is dominated by the 
annihilations of the vertices. 'Ib check the validity of the above results, as well as to 
examine the difference between the cases with 161 < 6, and 161 > 6, in detail, we 
need to calculate the scattering structure functions. 

In summary, we have performed two-dimensional camputer simulations of DC 
patterns and have studied the asymptotic growth law of the average ordered domain 
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size. For the case of p = 3, we have found that the ordering process with weak misfit 
@ut 6 > 0.07) goes on faster than that with strong misfit, but for both cases the 
average sizes wry logarithmically in time for the late stage. On the other hand, for 
6 < 0.07 the average sizes wry as t*I2,  which is consistent with the results of [13]. 
The scaling behaviour of the scattering structure function and effects of temperature, 
as well as the p dependence of the above results, are interesting problems and still 
remain to be studied. 
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